
PUFs in RIOT: Releasing Recent
Crypto-fundamentals into the Wild

Peter Kietzmann, advised by Thomas C. Schmidt
Hamburg University of Applied Sciences (HAW Hamburg)

{peter.kietzmann, t.schmidt}@haw-hamburg.de

Abstract—Internet-connected devices need to provision crypto
components in order to communicate securely in the network.
Random number generation, authentication, or secret key gen-
eration rely on decent platform resources that provide unpre-
dictable but reliable high-entropy numbers. Common solutions
require a certain level of hardware and software complexity and
thus device cost that are typically unavailable in the IoT.

Physically unclonable functions (PUFs) are a promising class
of solutions to this problem. They extract output from individual
hardware properties that persist due to manufacturing inaccu-
racies. The extracted physical characteristics act as a digital
fingerprint and can be used to generate random numbers but
also to produce device unique secrets, which enhances security in
various application scenarios. To make these crypto fundamentals
widely available on low cost IoT nodes, we introduce and
thoroughly evaluate a PUF module in the operating system RIOT.

I. INTRODUCTION & RELATED WORK

The IoT interconnects off-the-shelf microcontrollers with
the global Internet. RIOT [1] is the open source operating
system that brings standard networking to many IoT nodes.
Like in most OSes, networking, cryptography, and other daily
routines require local input of very low predictability. Gen-
erating unclonable individual numbers on microcontrollers,
though, is surprisingly hard, since most devices run on a de-
terministic clock and show almost no distinguishing features.
Furthermore, the minority of these constrained and low-power
IoT platforms provide secure hardware components.

Physically unclonable functions (PUFs) are a promising
class of solutions to this problem. They extract unique output
from individual hardware properties like a digital fingerprint.
Similar to a human fingerprint, PUF responses are affected by
noise which can be used as entropy source on a single device.

The field of PUF based applications is manifold and com-
prises device identification or authentication. Security mech-
anisms like DTLS or HMAC rely on pre-established keys,
which can be generated from a PUF. Alternatively, a PUF
can be used to decrypt a pre-shared encrypted key that is
stored on non-volatile memory. Furthermore, device specific
configuration parameters can be secured in an encrypted way
to generate individual application to device bindings.

In [2] secure applications based on PUFs were analyzed
and evaluated on different microcontroller types. One valu-
able use of PUFs is random number generation to properly
seed pseudorandom number generators (PRNGs) which was
analyzed in detail in [3]. The authors of [4] presented a secure
approach to reliably generate crypto-keys from PUF responses

by removing the noise component and in [5] a similar approach
was implemented on an FPGA and analyzed in terms of
resource utilization. First attacks against certain PUF based
key-generators were already presented in [6] and [7].

To the best of my knowledge, there is no lightweight, open
source, operating system integration of such PUF primitives.
To enable security fundamentals for constrained microcon-
trollers that lack secure hardware, this work focuses an easy-
to-use integration of PUFs based on uninitialized SRAM
memory patterns to (i) properly seed PRNGs and (ii) for secret
key generation in the IoT operating system RIOT. The focus
lies on SRAM PUFs because this component is one of the few
entropy sources that is present on all supported devices. With
the integration of crypto-primitives in RIOT we contribute to
a reliable, robust and secure Internet of Things.

II. RESEARCH CHALLENGES & CONTRIBUTIONS

A. Preliminary Analysis

Transistor variations of memory cells lead to different states
after device power-on. The startup state of multiple memory
blocks form a device-unique pattern plus additional noise.
It is worth noting that memory properties may depend on
environmental parameters and thus, they should be evaluated
for each individual deployment. To prove usability of SRAM
mounted on typical RIOT platforms, I analyzed inter- and
intra- device variations between multiple PUF responses of
various microcontrollers at ambient conditions. In more detail,
I calculated (i) the minimum entropy as a measure of random-
ness and (ii) the hamming weight to determine bias between
multiple startups of one device as well as (iii) the fractional
hamming distance between different device responses to depict
uniqueness. Results for (i) and (ii) indicate existence of a
relative min. entropy around 5 % and unbiased patterns. A
relative fractional distance of approximately 50 % in (iii)
indicates uniqueness between device responses. More detailed
analyses were published in [8].

B. Random Seeder

The newly introduced RIOT module to create random
seeds hooks in the startup code even before the OS kernel
initialization in order to get uninitialized memory state. A PUF
measurement is compressed by the lightweight DEK hash to
build a high entropy 32-bit number that is stored at a pre-
allocated RAM section. Afterwards the kernel is initialized,



followed by automatic initialization of RIOT modules which
includes PRNG seeding with the PUF based seed value.

To prove decent memory length for seed generation I
evaluated the minimum seed entropy for varying input lengths
and platforms. All measurements converge to approximately
31-Bit entropy with 1 kB SRAM which is a huge improvement
considering that RIOT currently uses the CPUID for seeding.

Finally, I applied the NIST Statistical Test Suite [9] to
a sequence of 1 Mega seeds, generated by a STM32F4
microcontroller. Thereby, the dataset was divided into 32
bitstrings of length 1 Mbit. The test suite consists of 15
tests that compare bitstrings against the hypothesis of perfect
randomness. A test passes if the p-value lies within the
significance level [α; 1 − α] with α = 0, 01. The random
sequences successfully passed all tests.

C. Secret Generation

PUF measurements are noisy and not uniformly distributed.
In order to reliably generate error-free and reproducible PUF
responses on each device startup, a method called secure
sketch is used to eliminate random bitflips by means of error
correction codes. A randomness extractor generates uniformly
distributed and compressed high entropy values from corrected
PUF responses by incorporating a secure one-way hash func-
tion. Together, both components are known as fuzzy extractor.
Deployment of such an extractor consists of two phases:

a) Enrollment: During enrollment a reference PUF mea-
surement is taken and redundancy is added according to the
code offset method for later error correction. This procedure
generates a public (non-secret) helper data set but it needs
to be processed in a trusted environment. The helper data is
stored in non-volatile memory of the IoT device.

b) Reconstruction: The reconstruction is done during
startup when the device is deployed. It utilizes the public
helper data and a noisy PUF measurement together, to decode
and consequently correct errors. From there, a secret key can
be reliably constructed by applying a one-way function for
privacy amplification. One major advantage of this mechanism
is the unnecessity to store secrets long term, as they are only
derived during startup.

The helper data generation is executed once for the IoT de-
vice life-time and requires a dedicated measurement firmware
on that device, whereas the actual helper is calculated on an
external machine and written to the IoT devices non-volatile
memory afterwards. Once the individual helper is available,
the actual IoT firmware can be flashed which may or may not
utilize the secret generator. To simplify deployment process I
implemented a build tool in RIOT that automatically flashes
the measurement software, generates helper data and re-flashes
the device with the required application.

III. RESEARCH AGENDA

A. Entropy Source Optimization

SRAM PUFs are not only prone to attacks when physical
device access is given, they may also be affected by aging
processes of memory cells which would reduce intra-device

entropy. Furthermore, this technique requires a power-down of
the memory at the order of seconds. Thus, generating a new
seed is impossible on the fly. However, some platforms provide
different clock sources for high-precision or low-precision and
low-power timers. I plan to experiment with a PUF that relies
on jitters between different clock sources. Thereby, one mayor
task will be the design of a proper PUF challenge and the
minimum time needed to generate a high entropy number of
defined bit length. Furthermore, this PUF needs a generic
integration next to the currently implemented SRAM PUF
infrastructure. Long-term, I plan to accumulate multiple PUF
sources to increase reliability.

B. Deployment Simplification
Deployment of an individual secret generator requires two

phases. Currently this incorporates two flash processes with
external helper data calculation in between. However, some
low-power microcontrollers allow for powering-off only parts
of the memory block in order to reduce current consumption.
Theoretically, this enables helper data generation on the con-
troller itself. I plan to implement a transparent solution for
that, to simplify industrial deployment in future.

C. Security Analysis
The helper data is stored on non-volatile memory and thus,

it is not a secret. Ideally, it does not reveal information about
the PUF response itself. In practice, the helper data relies
on the XORed reference PUF response and a sequence of
code words, according to the code offset. This may introduce
entropy leakage, especially when trivial but resource efficient
coders were used. In future I will analyze this leakage effect as
well as other vulnerabilities of helper data in more detail and
try to find a solution that trades-off robustness and security
against resource efficiency in our RIOT implementation.

REFERENCES

[1] E. Baccelli et al., “RIOT: an Open Source Operating System for
Low-end Embedded Devices in the IoT,” The IEEE IoT Journal, 2018.

[2] A. Schaller, “Lightweight Protocols and Applications for Memory-
Based Intrinsic Physically Unclonable Functions Found on Commercial
Off-The-Shelf Devices,” Doctoral Dissertation, TU Darmstadt, 2017.

[3] A. Van Herrewege et al., “Secure prng seeding on commercial
off-the-shelf microcontrollers,” in Proc. 3rd Intern. WS on Trustworthy
Embedded Devices, TrustED ’13, ACM, 2013, pp. 55–64.

[4] Y. Dodis et al., “Fuzzy Extractors: How to Generate Strong Keys from
Biometrics and Other Noisy Data,” SIAM Journal on Computing, vol. 38,
no. 1, pp. 97–139, 2008.

[5] C. Bösch et al., “Efficient Helper Data Key Extractor on FPGAs,” in
Cryptographic Hardware and Embedded Systems - CHES. Springer,
2008, pp. 181–197.

[6] J. Delvaux et al., “Attacking PUF-Based Pattern Matching Key Generators
via Helper Data Manipulation,” in Topics in Cryptology — CT-RSA 2014.
Springer, 2014, pp. 106–131.

[7] C. Helfmeier et al., “Cloning Physically Unclonable Functions,” in IEEE
International Symposium on Hardware-Oriented Security and Trust -
HOST, 2013, pp. 1–6.

[8] P. Kietzmann et al., “A PUF Seed Generator for RIOT: Introducing
Crypto-Fundamentals to the Wild,” in Proc. of 16th ACM International
Conference on Mobile Systems, Applications - MobiSys, Poster Session.
NY, USA: ACM, June 2018.

[9] L. Bassham et al., “SP 800-22 Rev. 1a. A Statistical Test Suite for Random
and Pseudorandom Number Generators for Cryptographic Applications,”
Gaithersburg, MD, US, Tech. Rep., National Institute of Standards &
Technology, 2010.


